If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+6a-7=0
a = 2; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·2·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*2}=\frac{-6-2\sqrt{23}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*2}=\frac{-6+2\sqrt{23}}{4} $
| -19=5x-2x+2 | | 5(15x+75)=1125 | | 180=7x-24+5x+14 | | m/3=-7/1 | | 2(3x-10)+2x=132 | | 2/5k-(k+1/4)=1/20(k+5) | | X-(2x+1)=2-(3x-1) | | 126=3x+81 | | 12y-37=180 | | 1/12y=(1/15-11/14) | | 6x=8x^2 | | 126=3x=81 | | 5y+19=180 | | 126=3x+78 | | 16x-13=180 | | 130=4x+70 | | 5x-7=12+4 | | 32x-9=4x-12 | | 5+2p-2=9p+11-6p | | 14x-12=6x+4 | | 7x-56=32x+4 | | 5(3x+1)=20x-5 | | 5x+5=6x+12 | | 14x-12=6x=4 | | 6(3x-1)=22 | | -2p-+7=6-(7p+7) | | 9x+7=2x-21 | | 1/5e=5/3 | | 5z-24=8z-3 | | 3(y-3)=6y-27 | | 18-4x=4x+52 | | s÷7+8=-3 |